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∗∗∗ École Centrale de Lyon, Département Mathématiques et Informatique, Institut Camille-Jordan,

(C.N.R.S. U.M.R. 5208), 36 avenue Guy-de-Collongue, 69134 ECULLY Cedex, France
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Abstract. The Stokes–Leibenson problem for Hele-Shaw flow is reformulated as a Cauchy
problem of a nonlinear integro-differential equation with respect to functions a and b, linked
by the Hilbert transform. The function a expresses the evolution of the coefficient longitu-
dinal strain of the free boundary and b is the evolution of the tangent tilt of this contour.
These functions directly reflect changes of geometric characteristics of the free boundary of
higher order than the evolution of the contour point obtained by the classical Galin–Kochina
equation. That is why we managed to uncover the reason of the absence of solutions in the
sink-case if the initial contour is not analytic at at least one point, to prove existence and
uniqueness theorems, and also to reveal a certain critical set in the space of contours. This set
contains one attractive point in the source-case corresponding to a circular contour centered
at the source-point. The main object of this work is the analysis of the discrete model of the
problem. This model, called quasi-contour, is formulated in terms of functions corresponding
to a and b of our integro-differential equation. This quasi-contour model provides numerical
experiments which confirm the theoretical properties mentioned above, especially the exis-
tence of a critical subset of co-dimension 1 in space of quasi-contours. This subset contains
one attractive point in the source-case corresponding to a regular quasi-contour centered at
the source-point. The main contribution of our quasi-contour model concerns the sink-case:
numerical experiments show that the above subset is attractive. Furthermore, this discrete
model allows to extend previous results obtained by using complex analysis. We also provide
numerical experiments linked to fingering effects.

DOI 10.1134/S1061920816010039
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1. INTRODUCTION

When presenting the first edition of the book [30], A. N. Krylov wrote in the preface: “Involun-
tarily, I remembered the spring session of the Marine Engineering Society in 1898. At this session,
Prof. Hele-Shaw for the first time exhibited his cell, which was projected on a screen to show the
streamlines of a jet flow past various kinds of obstacles.” In the same 1898, Stokes [39] showed that
the Hele-Shaw cell was (as Lamb wrote in [27]) “a beautiful experimental verification of the forms
of streamlines for certain cases of stationary vortex-free planar motion.”

The core of the Hele-Shaw device is a blob of fluid, for example, glycerin, moving between two
glass plates. In recent decades, the attention of some scientists has been attracted to the problem
of motion of such a blob when glycerin is injected or sucked through a small hole in one of the
plates. The air that surrounds the blob is another fluid with negligible viscosity.

†Deceased.
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36 DEMIDOV et al.

Fig. 1. Fluid is injected (or sucked) through some source-point (or sink-point) O.

In the idealization proposed by L. S. Leibenson [28], this viscosity vanishes. This corresponds to
the case of constant pressure on the blob boundary. The classical statement of the Stokes-Leibenson
problem for Hele-Shaw flows can be written as follows.

Let Ω0 be a bounded simply connected domain in R2 enclosing the origin (where the source-sink
point is located) and such that its boundary Γ0 is smooth enough. This domain will be deformed
according to the following law. At time t, we obtain a domain Ωt with boundary Γt such that the
normal velocity of each point s of Γt is given by

kinetic condition: ṡ.ν = ∂νu on Γt ,

where ν is the unit normal outward-pointing vector, ∂νu is the normal outside derivative of some
real function u (see [28, 39]) defined in Ωt by

Stokes equation for Hele-Shaw sell: ∆u = qδ in Ωt ,
Leibenson dynamical condition: u = 0 on Γt .

Here, ∆ = ∂2
xx+∂2

yy is the classical Laplace operator and δ is the “ Dirac distribution” concentrated
at the origin. The coefficient q belongs to R∗ and characterizes the source-power (respectively, sink-
power) when it is positive (respectively, negative).

Mathematical research about the above Stokes–Leibenson problem began with the papers of
Galin [17] and Polubarinova–Kochina [33, 34], published in 1945. In these articles, the authors
introduced a certain univalent mapping f(·, t) from the unit disk {ζ ∈ C / |ζ| 6 1 } onto the desired
domain Ωt and obtained the equation

2π ℜ

[
∂f

∂t
(ζ, t)

(
ζ
∂f

∂ζ
(ζ, t)

)]
= q, |ζ| = 1 . (1.1)

Under the assumption that f(ζ, t) = a1(t) + a2(t)ζ + · · ·+ an(t)ζ
n, Galin [17] obtained a system of

ordinary differential equations for the coefficients aj(t). For n = 2, this system takes the form [34]

a21(t)a2(t) = a21(0)a2(0), a21(t) + 2a22(t) = a21(0) + 2a22(0)−
qt

π
.

If |a2/a1| < 1/2, then the image of the unit circle by the mapping f(·, t) is a limaçon Γ0. In the
sink case (q < 0), it is transformed in finite time into a cardioid Γt∗ whose cusp does not reach the
sink-point. Further (i.e., for t > t∗) the map f(·, t) stops being univalent and the solution t 7→ Γt

ceases to exist. By using the meromorphic map ζ 7→ f(ζ, t), Kufarev [26] found a similar effect
for a circle where the sink-point is shifted relatively to the center. The first theorem on the local
solvability of the Stokes–Leibenson problem was obtained in [40].

In the last decades, such problems have often been called problems of Hele-Shaw flows or Hele-
Shaw free boundary problems [31]. Interest in such problems increased in recent years (see, e.g.,
[18, 19, 21, 25, 29, 31] and references therein). These problems are also good models for some more
complicated two-phases problems (see, e.g., [4, 5, 32]).

In this paper, we study the Stokes–Leibenson problem from a different point of view than the
Galin–Kochina approach. Namely, applying the functional-geometric method [10], inspired by the
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STOKES–LEIBENSON PROBLEM FOR HELE-SHAW FLOW 37

ideas of Helmholtz [22] and Kirchhoff [24], we reformulate the Stokes–Leibenson problem as a
Cauchy problem for a nonlinear integro-differential equation. This is an equation with respect to
two functions a and b linked by the Hilbert transform at each time t > 0. The function a expresses
the evolution of the coefficient longitudinal strain of the free boundary and b is the evolution of the
tangent tilt of this contour. These functions directly reflect changes in the geometric characteristics
of the free boundary of order higher than that of the evolution of the contour point obtained by the
classical Galin–Kochina equation. That is why we managed to uncover the reason of the absence
of solutions in the sink-case, if the initial contour is not analytic at at least one point, to prove
existence and uniqueness theorems for any t > 0 for a H2-smooth initial contour close to the circle,
and also to reveal a certain critical set in the space of contours. This set contains one attractive
point in the source-case corresponding to a circular contour centered at the source-point.

This result was announced in [11], briefly outlined in the note [7] (see also [8, 9]). Furthermore,
this leads to a discrete model, called the quasi-contour model [6, 14, 11, 12], which is very useful
for obtaining qualitative properties. This allows us to present numerical results which show the
existence of a critical subset, contained in M and of co-dimension 1, in a fixed space of quasi-
contours. The behavior near this subset can be an explanation of some physical instabilities.

In order to simplify some technical aspects, we shall rewrite the previous system, the Stokes–
Leibenson dynamical condition in the following form:

(1) Ω0 is a bounded simply connected domain in R2, symmetric with respect to the x-axis,
containing the origin O (where the source-sink is located) such that its boundary Γ0 is
smooth enough;

(2) this domain will be deformed according to the following law: at time t > 0, one obtains a
domain Ωt of boundary Γt such that the normal velocity of almost every point s of Γt is
given by following kinetic condition

ṡ.ν =
q

2
∂νu on Γt , (1.2)

where the function u satisfies the following Stokes–Leibenson system{
∆u = 2δ in Ωt ,
u = 0 on Γt .

(1.3)

The proof of the equivalence with the above system, the kinetic condition–Stokes equation–Leibenson
dynamical condition (see above) is immediate and is left to the reader.
It can be observed that the behavior of points of Γt depends on the shape of Ωt through u and
depends linearly on the flow-power q.
Our paper is organized in four following sections:

(1) Geometrical transformation [10]: techniques inspired by works of Helmholtz [22] and Kirch-
hoff [24].

(2) Theoretical results, concerning the Stokes–Leibenson problem.
(3) Discrete problem: an approximated Stokes–Leibenson problem and a numerical scheme, the

so-called “quasi-contour model,” are constructed there.
(4) Numerical experiments: some results obtained by using above model are given.

2. GEOMETRICAL TRANSFORMATION

In this Section, we consider a fixed bounded connected open set Ω of R2 with a conveniently
regular boundary Γ so that a normal unit vector ν pointing outwards Ω and its directly orthogonal
tangent unit vector τ can be defined almost everywhere. Furthermore, we suppose that Ω contains
the origin point O of Cartesian coordinates and is symmetric with respect to the x-axis.

2.1. General Case

As above, we denote by δ the associated Dirac distribution.
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Let us consider the following Laplace problem, similar to (1.3),{
∆u = 2δ in Ω ,
u = 0 on Γ .

(2.1)

Let us now suppose that Ω is symmetric with respect to x-axis and define

Ω+ = {(x, y) ∈ Ω / y > 0} , Γ+ = {(x, y) ∈ Γ / y > 0} ,
γ− = {(x, 0) ∈ Ω / x < 0} , γ+ = {(x, 0) ∈ Ω / x > 0} .

Because of the symmetry with respect to the x-axis, the above problem (2.1) can be reduced to{
∆u = δ in Ω+ ,
u = 0 on Γ+ ,

∂νu = 0 on γ− ∪ γ+ .
(2.2)

Then we can consider that u is a harmonic function in Ω+ and introduce its harmonically conjugate
function v such that the Cauchy–Riemann conditions are satisfied

∂xv = −∂yu and ∂yv = ∂xu in Ω+ . (2.3)

Remark 2.1. Since v is harmonically conjugate to u, we get ∇u.∇v = 0 and |∇v| = |∇u| in
Ω+ and ∇u = |∇u| ν and ∇v = |∇v| τ on Γ+.

By using Green formula, one can easily get the following result.

Remark 2.2. γ− and γ+ are level curves for v and v|γ− − v|γ+ =

∫
Γ+

∂νu dσ = 1.

Finally, without any constraint, we can choose v so that it satisfies
∆v = 0 in Ω+ ,
∂νv = 0 on Γ+ ,
v = 0 on γ+ ,
v = 1 on γ− .

(2.4)

Now let us now consider the analytic complex valued function w = u + ıv defined in Ω+. By the
maximum principle for harmonic functions, w is univalent from Ω+ onto

Π = {w = u+ ıv / (u, v) ∈ (−∞, 0)× (0, 1)} .

Since Π is simply connected, the Helmholtz–Kirchhoff function (see [10]) is well-defined in Π

A+ ıB = ln
dz

dw
, where z(w) = x(u, v) + ıy(u, v) , (2.5)

where A and B are real-valued functions. By a continuity argument, we obtain B(u, 0) = 0 and
B(u, 1) = π. Hence, the Helmholtz–Kirchhoff function can be written as follows:

A(u, v) + ıB(u, v) = α0 + π(u+ ıv) +
∞∑
k=1

βk exp
(
πk(u+ ıv)

)
, (2.6)

where α0 and βk (k ∈ N∗) are real coefficients.
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Fig. 2. Upper part of fluid domain.

Definition 2.1. From above formula, we can define real functions Ã, B̃, a, b, α, β such that

A(u, v) = α0 + πu+ Ã(u, v) , B(u, v) = πv + B̃(u, v) ,

Ã(u, v) =
∞∑
k=1

βk exp(kπu) cos(kπv), B̃(u, v) =
∞∑
k=1

βk exp(kπu) sin(kπv) ,

a(η) = A(0, η) = α0 + α(η), b(η) = B(0, η) = πη + β(η) ,

α(η) = Ã(0, η) =

∞∑
k=1

βk cos(kπη), β(η) = B̃(0, η) =

∞∑
k=1

βk sin(kπη) .

Remark 2.3. Every point z = x+ ıy of Ω+ is linked to a unique point w = u+ ıv of Π.

Every point of Γ+ is linked to a unique point η ∈ (0, 1) such that “w = 0 + ıη.”

Lemma 2.1. The solution u of (2.2) and the solution v of (2.4) satisfy

∇u = exp(−A)
(
cosB
sinB

)
, ∇v = exp(−A)

(− sinB
cosB

)
in Π .

Immediate consequences are

|∇u| = |∇v| = exp(−A) in Π and |∇u| = |∇v| = exp(−a) on (0, 1) .

Proof. From (2.5), we see that

dw

dz
= exp(−A− ıB).

On the other hand, the Cauchy-Riemann conditions (2.3) yield

dw

dz
= ∂xu− ı∂yu = ∂yv + ı∂xv.

Then the result can be deduced from (2.6).

Remark 2.4. A point s ∈ Γ+ is linked to the parameter η ∈ (0, 1), the normal and tangential
unit vectors are given by

ν =
(
cos b
sin b

)
, τ =

(− sin b
cos b

)
on (0, 1) ,

and s is given by the following formula

s(η) = s0 +

∫ η

0

exp a(v) τ(v) dv = s0 + eα0

∫ η

0

expα(v) τ(v) dv , with {s0} = Γ+ ∩ γ+ .
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Remark 2.5. The measures of γ+ (abscissa of s0), Γ
+ (dimension 1), and Ω+ (dimension 2)

are given by the following formulas:

|γ+| =
∫ 0

−∞
expA(u, 0) du = eα0

∫ 0

−∞
exp
(
πu+ Ã(u, 0)

)
du ,

|Γ+| =
∫ 1

0

exp a(v) dv = eα0

∫ 1

0

expα(v) dv ,

|Ω+| =
∫
Π

exp 2A(u, v) du dv = e2α0

∫
Π

exp 2
(
πu+ Ã(u, v)

)
du dv .

Let b : η 7→ b(η) = πη + β(η) be the angle between ν and the x-axis at the point s(η) ∈ Γ+ and
suppose that this function is regular enough so that

b(0) = 0 , b(1) = π , β ∈ L2(0, 1) .

Then the Fourier expansion of β can be computed. The coefficient α0 can be deduced from the
formula for |Ω+| in the previous Remark 2.5

α0 =
1

2
ln |Ω+| − 1

2
Υ(β̃) with Υ(β) = ln

(∫
Π

exp 2
(
πu+ Ã(u, v)

)
du dv

)
. (2.7)

This yields the functions a, A and the Helmholtz-Kirchhoff function by formula (2.5). Hence, the
geometrical transformation from Π onto Ω+ is known.

2.2. Circular Case

Remark 2.6. If β = 0, then Ω is a circular disk centered at O and the complex number
u+ ıv ∈ Π is linked to polar coordinates in the following sense:

r =
√
2|Ω+|/π exp(πu) , θ = πv .

2.3. Polygonal Case

A more interesting case concerns polygonal open sets. We consider the class Pm (m ∈ N∗) of
simply connected polygonal domains such that

(1) each of these domains is symmetric with respect to the x-axis and contains the origin;
(2) its boundary is a polygonal line with 2m vertices;
(3) consequently, m− 1 edges belong to the half-plane y > 0.

Any such polygonal domain can be characterized by two sequences:

(1) the first one, σ = (σ0, . . . , σm) satisfies 0 = σ0 < σ1 < · · · < σm−1 < σm = 1; it gives
the length of the edges; this sequence is defined by means of the function v harmonically
conjugate to the solution u of problem (2.1) (see also (2.4)): σk is the value of v at the k-th
vertex of the upper part of Γm;

(2) the second one, N = (N1, . . . , Nm), gives the orientation of edges, i.e., Nk is the angle
between the x-axis and the normal unit vector pointing outwards Ωm along the k-th edge of
the upper part of Γm; because of the symmetry with respect to x-axis, we define N0 = −N1
and Nm+1 = 2π −Nm.

The function b given in Definition 2.1 (and used in Remark 2.4) is piecewise constant:

∀k ∈ {1, . . . ,m} , σk−1 < η < σk =⇒ b(η) = Nk . (2.8)

Remark 2.7. The regular polygonal domain centered at the origin corresponds to the choice

σ = σ̂ and N = N̂, where σ̂ =
(
0, 1

m , . . . , m−1
m , 1

)
and N̂ =

(
π
2m , 3π

2m , . . . , (2m−1)π
2m

)
.
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Proposition 2.1. If the function b is given by (2.8), than the functions A and a will be

A(u, v) = α0 − ln 2− N1

π
ln |coshπu− cosπv|

− 1

2

(
1− Nm

π

)
ln
∣∣(coshπu− cosπ(v + 1)

)(
coshπu− cosπ(v − 1)

)∣∣
−

m∑
k=1

Nk+1 −Nk

2π
ln
∣∣(coshπu− cosπ(v + σk)

)(
coshπu− cosπ(v − σk)

)∣∣ ,
a(η) = α0 − ln 2− N1

π
ln |1− cosπη| −

(
1− Nm

π

)
ln |cosπη + 1|

−
m∑

k=1

Nk+1 −Nk

π
ln |cosπη − cosπσk| ,

where α0 is given by (2.7).

Fig. 3. Example of upper part of a centered regular hexagonal domain.

Proof. The classical Fourier expansion of β is

β(η) =
∞∑
ȷ=1

2

ȷ

(N1

π
+

m∑
k=1

Nk+1 −Nk

π
cos(ȷπσk)

)
sin(ȷπη) .

By Definition 2.1, we have

A(u, v) = α0 + πu+
∞∑
ȷ=1

βȷ exp(ȷπu) cos(ȷπv).

We then get A from the following expansion, which holds for u < 0 and v ∈ (−1, 1),

∞∑
ȷ=1

2

ȷ
exp(ȷπu) cos(ȷπv) = − ln 2− πu− ln |coshπu− cosπv| .

For v = η, as u → 0, the computation leads to the expansion of a.
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Let us now introduce the following notation:

Fȷ(u, v) =

∣∣∣∣∣
(
coshπu− cosπ(v + σȷ−1)

)(
coshπu− cosπ(v − σȷ−1)

)(
coshπu− cosπ(v + σȷ)

)(
coshπu− cosπ(v − σȷ)

) ∣∣∣∣∣
1/2

, 1 6 ȷ 6 m,

Fm+1(u, v) =
∣∣(coshπu− cosπ(v + 1)

)(
coshπu− cosπ(v − 1)

)∣∣1/2 ,

G(N, u, v) = 2
( m∏
k=1

Fk(u, v)
Nk/π

)
Fm(u, v) ,

fȷ(η) = Fȷ(0, η) =

∣∣∣∣ sin π
2 (η + σȷ−1) sin

π
2 (η − σȷ−1)

sin π
2 (η + σȷ) sin

π
2 (η − σȷ)

∣∣∣∣ , 1 6 ȷ 6 m, (2.9)

fm+1(η) = Fm+1(0, η) = 2
∣∣∣sin π

2
(η + 1) sin

π

2
(η − 1)

∣∣∣ ,
g(N, η) = G(N, 0, η) = 2

( m∏
k=1

fk(η)
Nk/π

)
fm(η) .

Proposition 2.2. The notation (2.9) enables us to write

|Ω+| = e2α0

∫
Π

1

G(N, u, v)2
du dv , |γ+| = eα0

∫ 0

−∞

1

G(N, u, 0)
du , |Γ+| = eα0

∫ 1

0

1

g(N, η)
dη .

Proof. Proposition 2.1 and the notation (2.9) lead to

A(u, v) = α0 − ln
(
G(N, u, v)

)
, a(η) = α0 − ln

(
g(N, η)

)
. (2.10)

We obtain the result by using Remark 2.5.

3. THEORETICAL RESULTS

We now consider the Stokes–Leibenson problem (1.2), (1.3) mentioned in the Introduction. We
here use the tools described in Section 2 in order to be able to constract a one parameter (t) chain
of solutions (Ωt,Γt). As we did in Section 2, we assume the existence of a fixed axis containing
the point O with respect to which Ωt and Γt are symmetric, and, at each time t, we shall use the
above geometrical transformation in order to express u and find the kinetic behavior of the points
of Γ+

t . Hence, the functions given in Definition 2.1 depend on time t via the coefficient α0 and the
function β. In particular, we obtain

a(t, η) = α0(t) + α(t, η), b(t, η) = πη + β(t, η),

α(t, η) =
∞∑
k=1

βk(t) cos(kπη), β(t, η) =
∞∑
k=1

βk(t) sin(kπη).
(3.1)

Then we can observe that a point s of Γ+
t depends on time t and its position along Γ+

t depends on
the parameter η ∈ (0, 1).

Proposition 3.1. At each point of Γ+
t , the normal velocity is independent of the parameter η.

Proof. For any point s ∈ Γ+
t , we can write ṡ = ∂ts+ η̇ ∂ηs , and observe that ∂ηs is a tangential

vector to Γ+
t (see Remark 2.4). Taking the inner product by ν, we get normal velocity, ṡ.ν = (∂ts).ν ,

and this expression is independent of the choice of η.
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3.1. Evolution Equation

Let us apply the results obtained in Section 2.

Proposition 3.2. Assume that, at almost every point, Γ+
t is regular enough. Then, for t > 0

and η ∈ (0, 1),

(ea ∂tb) (t, η) =
q

2

(
e−a ∂ηa

)
(t, η) + ∂ηb(t, η)

∫ η

0

(
ea ∂ta− q

2
e−a ∂ηb

)
(t, v) dv .

Proof. Here we consider a point s = s(t, η) that belongs to Γ+
t . From (1.2), Remark 2.1, Lemma

2.1, and Proposition 3.1, we deduce ṡ.ν = (∂ts).ν = q/2 e−a . Taking the derivative with respect to
η, we get, for t > 0 and η ∈ (0, 1),

(∂2
ηts).ν + (∂ηb) (∂ts).τ = −(q/2) e−a ∂ηa . (3.2)

Using Remark 2.4, we obtain ∂ηs = ea τ and ∂2
ηts = ea ((∂ta) τ − (∂tb) ν). Thus, (∂

2
ηts).ν = −ea ∂tb

and (∂2
ηts).τ = ea ∂ta . Similarly, we compute

∂η ((∂ts).τ) = (∂2
ηts).τ − (∂ηb) (∂ts).ν = ea ∂ta− q

2
e−a ∂ηb .

Using the symmetry of the contour Γ with respect to the x-axis, we can write (∂ts).τ = 0 for η = 0.
Then, for t > 0 and η ∈ (0, 1),

((∂ts).τ) (t, η) =

∫ η

0

(
ea ∂ta− q

2
e−a ∂ηb

)
(t, v) dv . (3.3)

Our result can now be easily deduced from (3.2), (3.3).

Corollary 3.1. The above integro-differential equation can be written as follows

β̇(t, η)−
(
(π + ∂ηβ) e

−α
)
(t, η)

∫ η

0

(α̇ eα)(t, v) dv

=
q

2
e−2α0(t)

[(
∂ηα e−2α

)
(t, η)−

(
(π + ∂ηβ) e

−α
)
(t, η)

∫ η

0

(
(π + ∂ηβ) e

−α
)
(t, v) dv

]
+ α̇0(t)

[(
(π + ∂ηβ) e

−α
)
(t, η)

∫ η

0

eα(t,v) dv
]
.

Proof. We substitute formulas (3.1) into the equation of Proposition 3.2.

According to formulas (3.1) the functions α and β are linkedby the Hilbert transform. Having
this in mind, let us write the integro-differentiable equation from Corollary 3.1 in the form[

I+K0(β̃)
] ˙̃
β =

q

2
e−2α0 F1(β̃) + α̇0 F2(β̃) , (3.4)

where I is the identity operator and

K0(β̃) : β̇(t, η) 7→ −
(
(π + ∂ηβ) e

−α
)
(t, η)

∫ η

0

(∂tα eα)(t, v) dv (3.5)

F1(β̃)(t, η) = (∂ηα e−2α)(t, η)−
(
(π + ∂ηβ) e

−α
)
(t, η)

∫ η

0

(
(π + ∂ηβ) e

−α
)
(t, v) dv ,

F2(β̃)(t, η) =
(
(π + ∂ηβ) e

−α
)
(t, η)

∫ η

0

eα(t,v) dv .
(3.6)
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Proposition 3.3. For all t > 0, the shape of Γ+
t is characterized by the Fourier coefficients of

the function β.

Proof. Observe that the rate of increase of the area of Ωt is given by

d|Ωt|
dt

=

∫
Γt

ṡ.ν dγ =
q

2

∫
Γt

∂νu dγ = q .

In other words, |Ω+
t | =

q

2
t+ |Ω+

0 |. We now use Remark 2.5 to obtain the function α0 and find A

and a.

Using the function Υ given in (2.7), we can compute the coefficients depending on α0 in equation
(3.6)

e−2α0 =
exp(Υ◦β)

|Ω+
t |

and α̇0 =
1

2

d

dt

(
ln |Ω+

t | −Υ◦β
)
. (3.7)

Let us now define a new operator as follows

K1(β) :
˙̃
β 7−→

[
(t, η) 7→ 1

2

d(Υ◦β̃)
dt

(t) F2(β̃)(t, η)
]
. (3.8)

Theorem 3.1. Consider problem (1.2), (1.3). If, Γ+ is regular enough at almost every point,
then the main unknown β satisfies the following integro-differential equation

[
I+K0(β̃) +K1(β̃)

] ˙̃
β =

q

|Ωt|
[
exp
(
Υ◦β̃

)
F1(β̃) +

1

2
F2(β̃)

]
, (3.9)

where K0, K1, F1, F2, and Υ are, respectively, defined above in equations (3.4), (3.8), (3.5), (3.7)
and |Ωt| = qt+ |Ω0| , ∀t > 0.

Proof. Let us consider (3.6). From (3.7), we deduce the coefficient

q

2
e−2α0(t) =

q

qt+ 2|Ω+
0 |

exp
(
Υ(β̃(t))

)
.

Again, from (3.7), we can deduce the time derivative of α0,

α̇0(t) =
1

2

( q

qt+ 2|Ω+
0 |

− d(Υ◦β̃)
dt

(t)
)
.

We finally rewrite (3.6) by using above formulas and (3.8).

Remark 3.1. The above formulas could be easily extended to the case of a time depending
power flow. The corresponding law for fluid area should be

|Ω+
t | =

1

2

∫ t

0

q(s) ds+ |Ω+
0 |.
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3.2. Existence and Uniqueness Result

The case “q = 2 and β̃ small (in the sense of Fourier series)” has been studied by the above
method in [8, 9]: it corresponds to a fluid domain close to a circle centered at the source-point.

Coordinatewise, the dynamical system (3.9) becomes

2(t+ t0)
(
β1β̇1 + r1(β)β̇

)
=

(
−β2

1 + 2
∑

j>2 β
2
j

)
+s1(β) ,

2(t+ t0)
(
β̇k + rk(β)β̇

)
= −(k + 2)βk + sk(β) for k > 2 ,

 (3.10)

where
|rk(β)β̇| 6 C∥β∥1+sgn|k−1|

1 ∥β̇∥0 , |sk(β)| 6 C∥β∥2+sgn|k−1|
1

and

∥β∥1 = max
t

√∑
k>1

(
kβk(t)

)2
, ∥β̇∥0 = max

t

√∑
k>1

(
β̇k(t)

)2
.

Neglecting the terms containing rj and sj in (3.10), we obtain the system 2(t+ |Ω+
0 |)β̄1

˙̄β1 = −β̄2
1 + 2

∞∑
ȷ=2

β̄2
ȷ ,

2(t+ |Ω+
0 |) ˙̄βk = −(k + 2) β̄k , ∀k > 2 ,

(3.11)

with respect to β̄(t, η) =
∑
k>1

β̄k(t) sin(kπη).

Let us add the initial conditions

β̄(0, η) = β(0, η) =
∑
k>1

β0
k sin(kπη) , η ∈ (0, 1) . (3.12)

If initial data satisfy β0
1 ̸= 0, the solution of above Cauchy problem is

β̄1(t) = β0
1

(
|Ω+

0 |
t+|Ω+

0 |

)1/2(
1 +

∑∞
ȷ=2

2
ȷ+1

∣∣∣β0
ȷ

β0
1

∣∣∣2 (1− ( |Ω+
0 |

t+|Ω+
0 |

)ȷ+1))1/2

,

β̄k(t) = β0
k

(
|Ω+

0 |
t+|Ω+

0 |

)1+k/2

, ∀k > 2 ,

In [8, 9], it is proved that solution β of (3.9)–(3.12) behaves similarly to above function β̄.

Theorem 3.2. There exists a C∗ > 1 such that for every (χ, ε, T ) satisfying χ > 1, C∗χ
3ε 61,

C∗χ
2T 61, and for initial data β0 : η 7→ β0(η) =

∑
k>1

β0
k sin(kπη) belong to H1(0, 1) and verifying

|β0
1 | =

ε

8χ
,

∑
ȷ>2

k2|β0
ȷ |2 6

(ε
8

)2
,

problem (3.9)–(3.12) admits one and only one solution β belonging to some ε-neighborhood of zero
in C(0, T ;H1(0, 1)). Furthermore, β can be approximated by β̄, the solution of (3.11), (3.12), in the
following sense

|β̇1(0)− ˙̄β1(0)| 6 C∗ε ,
(∑
ȷ>2

|β̇ȷ(0)− ˙̄βȷ(0)|2
)1/2

6 χε .
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This result shows, in particular, that the solution β of (3.9)–(3.12) follows from the solution β̄ of
(3.11), (3.12) under assumptions of Theorem 3.2. We can observe that the origin (with respect to
β) is an attractive point when time increases. This means that the limit domain is circular and
centered at the source point. Furthermore, the first equation in system (3.11) shows that the set
“β1 = 0” is critical in the sense that it does not give any solution. It can be observed that if, in the

initial data, β1 is small, then the speed β̇1, as well as
˙̄β1, is high. From these two remarks, we can

deduce that locally the set “β1 = 0” contains the origin which is attractive (when time increases)
and that every other point of this set is repulsive (in the source case). This phenomena seems to

be associated to the fact that the operator I+K0(β̃) +K1(β̃) is singular. We shall try to develop
a convenient numerical scheme in order to study the set

M = {β̃ / I+K0(β̃) +K1(β̃) = 0} . (3.13)

Let us now complete this section with a global-in-time existence and uniqueness result.

Theorem 3.3. There exists ρ ∈ (0, 1/8) such that, for µ ∈ (0, 1], if the initial data β0 belongs
to H1(0, 1) and satisfies

0 < |β0
1 | 6 µρ ,

∞∑
k=2

k2|β0
k|2 6 (µρ)1/2|β0

1 |3/2 ,

then problem (3.9)–(3.12) admits one and only one solution β ∈ C(0,+∞;H1(0, 1)). If β̄ is the
reference function satisfying (3.11), (3.12), then

|β̇1(0)− ˙̄β1(0)| 6 µ ,
(∑
k>2

|β̇k(0)− ˙̄βk(0)|2
)1/2

6 µ .

Furthermore, there exists some constant C slightly exceeding 1 such that, for all t > 0, the following
estimates hold

|β̇1(t)− ˙̄β1(t)| 6 Cµ ,
(∑
k>2

|β̇k(t)− ˙̄βk(t)|2
)1/2

6 Cµ .

The reader can find a proof in [8, 9].

4. DISCRETE PROBLEM

We here try to develop a numerical method inspired by Euler’s idea of “broken lines.” To this
end, we introduce a discrete model [6, 10] of problem (1.2), (1.3). The reader may also find some
relationship with the Wulff crystal models from [1].

Our main idea has two aspects:

(1) we consider the class Pm (m ∈ N∗) of simply connected polygonal domains (see Subsec-
tion 1.3);

(2) we compute the behavior of such domains, the so-called “quasi-contours,” by applying a
discrete law inspired by the law of motion of smooth curves in the classical Stokes–Leibenson
problem.

4.1. Discrete Law and Notation

We fix a value of m ∈ N∗ and consider polygonal domains belonging to Pm. For such domains,
we denote by Γ̃m

t the set of 2m vertices of the boundary Γm
t . At each point p ∈ Γ̃m

t , we define a
quasi-normal unit vector pointing outwards from the domain, ν̃p, and a quasi-tangential unit vector
τ̃p (directly orthogonal with respect to ν̃p). Further, we define a nonnegative weight function dp,
which is positive at p and supported by the two edges around p, so that the set of these weight

functions is a partition of unity of Γm
t in the following sense:

∑
p∈Γ̃m

t

dp = 1 , on Γm
t .
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Fig. 4. Quasi-normal and quasi-tangent vectors at vertex pk.

We now consider a discrete problem close to the Stokes–Leibenson problem (1.2), (1.3). For t > 0,
we want to construct Ωm

t in Pm, and its boundary Γm
t , so that for t = 0, Ωm

0 is given in Pm and
all vertices of Γm

t verify the pointwise kinetic condition

ṗ.ν̃p =
q

2

∫
Γm
t

dp |∇u| dγ , ∀p ∈ Γ̃m
t , (4.1)

where u satisfies (1.3) in Ωm
t : {

∆u = 2δ in Ωm
t ,

u = 0 on Γm
t . (4.2)

In order to build the numerical model, we use the tools introduced in Subsection 1.3: we consider
a natural number m ∈ N∗ and the first sequence σ as fixed parameters, which the second sequence
N will be the main variable, depending on time. In particular, functions A and a depend on time
through α0 and N and, in this framework, using the functions G, g given by (2.9) and α0 given by
(2.7), formulas (2.10) can be rewritten as follows,

A(t, u, v) = α0(t)− ln
(
G(N(t), u, v)

)
, a(t, η) = α0(t)− ln

(
g(N(t), η)

)
.

For given parameters m and σ, we introduce some further notation:

(1) the m+ 1 vertices of the upper part of quasi-contour Γm: p0,p1, . . . ,pm corresponding to
sequence σ;

(2) the normal and tangential unit vectors along the edge pkpk+1: νk+1/2 and τk+1/2 (see (2.8));
(3) at each point pk, the quasi-normal and quasi-tangential unit vectors: ν̃k and τ̃k, so that the

speed of pk is ṗk = Rkν̃k + Tk τ̃k, where Rk and Tk are quasi-normal and quasi-tangential
speeds and

ν̃k =

(
cos bk
sin bk

)
, τ̃k =

(
− sin bk
cos bk

)
, where bk =

Nk +Nk+1

2
.

Because of the symmetry, we have T0 = Tm = 0. T1, . . . , Tm−1 are a priori unknown, as well as R0,
R1, . . . , Rm, which depend on t for a given parameter σ. The weight functions dp in the kinetic
condition (4.1) must be chosen so that the following properties hold

(P1) the pointwise kinetic condition (4.1) tends to the kinetic condition (1.2) as m → ∞,

(P2) for a regular quasi-contour centered at the origin (see Remark 2.7 ), we must have:

R0 = R1 = · · · = Rm .
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To this end, we make the following elementary choice: we first introduce the sequence

λk =
σk−1 + σk

2
, if 1 6 k 6 m ; λ0 = −λ1 ; λm+1 = 2− λm ;

we then define the k-th weight function by using the characteristic function χk of (λk, λk+1),

dpk
=

1

λk+1 − λk
χk .

Lemma 4.1. Under above choice, the kinetic condition (4.1) at each vertex pk (0 6 k 6 m)
can be written as

Rk =
q

2
exp(−α0) ρk(N) , with ρk(N) =

1

λk+1 − λk

∫ λk+1

λk

g(N, η) dη .

Proof. We use Lemma 2.1, formula (2.10) and the notation introduced above.

4.2. Discrete Model

We are now able to give a discrete version of equation (3.6) from Section 3. The following result
is very useful for the construction of a convenient numerical scheme.

Theorem 4.1. Let m ∈ N∗ and σ be fixed parameters as above. If (Ωm
t ,Γm

t ) is solution of
the discrete Stokes–Leibenson problem (4.1), (4.2), then the associated functions t 7−→ α0(t) and
t 7−→ N(t) satisfy the equation

Q0(N)Ṅ =
q

2
e−2α0 P 0(N) + α̇0 P

1(N) ,

where Q0 = (qkȷ)16k,ȷ6m, P 0 = (p0k)16k6m and P 1 = (p1k)16k6m can be expressed via the functions
fȷ, g given by (2.9) and ρȷ given in Lemma 4.1, in the following way (δkȷ is the classical Kronecker
symbol),

qkȷ(N) =
1

π

[
tan

Nk −Nk−1

2

∫ σk−1

0

ln fȷ(η)

g(N, η)
dη + tan

Nk+1 −Nk

2

∫ σk

0

ln fȷ(η)

g(N, η)
dη

]
+δkȷ

∫ σk

σk−1

dη

g(N, η)
,

p0k(N) = ρk−1(N) cos
Nk −Nk−1

2
− ρk(N) cos

Nk+1 −Nk

2

+ (δk1 − 1) tan
Nk −Nk−1

2

k−1∑
ȷ=1

[
ρȷ−1(N) sin

Nȷ −Nȷ−1

2
+ ρȷ(N) sin

Nȷ+1 −Nȷ

2

]

− tan
Nk+1 −Nk

2

k∑
ȷ=1

[
ρȷ−1(N) sin

Nȷ −Nȷ−1

2
+ ρȷ(N) sin

Nȷ+1 −Nȷ

2

]
,

p1k(N) = tan
Nk −Nk−1

2

∫ σk−1

0

dη

g(N, η)
+ tan

Nk+1 −Nk

2

∫ σk

0

dη

g(N, η)
.

Proof. With the above notation, for t > 0 we can write

pk+1 − pk =

∫ σk+1

σk

eaτk+1/2 dη =

(∫ σk+1

σk

ea dη

)
τk+1/2 .
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Differentiating with respect to t, we obtain

ṗk+1 − ṗk =

(∫ σk+1

σk

ea ∂ta dη

)
τk+1/2 − Ṅk+1

(∫ σk+1

σk

ea dη

)
νk+1/2 . (4.3)

But we have
ṗk+1 − ṗk = Rk+1ν̃k+1 + Tk+1τ̃k+1 −Rkν̃k − Tk τ̃k . (4.4)

One can easily observe

ν̃k.νk+1/2 = τ̃k.τk+1/2 = cos
Nk+1 −Nk

2
, ν̃k+1.νk+1/2 = τ̃k+1.τk+1/2 = cos

Nk+2 −Nk+1

2
,

ν̃k.τk+1/2 = −τ̃k.νk+1/2 = − sin
Nk+1 −Nk

2
, ν̃k+1.τk+1/2 = −τ̃k+1.νk+1/2 = sin

Nk+2 −Nk+1

2
.

Now, with (4.3) and (4.4), we compute (ṗk+1 − ṗk).τk+1/2, (ṗk+1 − ṗk).νk+1/2,∫ σk+1

σk

ea ∂ta dη = Rk+1 sin
Nk+2 −Nk+1

2
+Rk sin

Nk+1 −Nk

2

+ Tk+1 cos
Nk+2 −Nk+1

2
− Tk cos

Nk+1 −Nk

2
,

(4.5)

(∫ σk+1

σk

ea dη

)
Ṅk+1 = −Rk+1 cos

Nk+2 −Nk+1

2
+Rk cos

Nk+1 −Nk

2

+ Tk+1 sin
Nk+2 −Nk+1

2
+ Tk sin

Nk+1 −Nk

2
.

(4.6)

Summing the above equations (4.5) from k = 0 to k = ȷ − 1 (ȷ ∈ N∗, ȷ < m + 1) and taking into
account the fact that T0 = 0, we obtain

Tȷ cos
Nȷ+1 −Nȷ

2
=

∫ σȷ

0

ea ∂ta dη −
ȷ−1∑
k=0

[
Rk+1 sin

Nk+2 −Nk+1

2
+Rk sin

Nk+1 −Nk

2

]
.

This gives Tȷ. We substitute this expression into (4.6). From formulas (2.9) and (2.10), we deduce

a(t, η) = α0(t)− ln g(N(t), η) , ∂ta(t, η) = α̇0(t)−
1

π

m∑
ȷ=1

Ṅȷ(t) ln fȷ(η) .

Using Lemma 4.1, we finally get the required differential equation.

Remark 4.1. Since the domain Ωt is assumed connected, the vector-function N satisfies
−π

2
< N1 <

π

2
,

−π < Nk −Nk−1 < π , ∀k ∈ {2, . . . ,m} ,
π

2
< Nm <

3π

2
.

(4.7)

These conditions give the existence of every integral term in formulas introduced in Proposition 2.2
and Theorem 4.1.

This leads us to define a set of constraints about the sequences N.

Definition 4.1. For given m ∈ N∗, the set of constraints, Um is the set of sequences
N ∈ Rm such that (4.7) is satisfied and the generating vertices p1, . . . , pm−1 have a nonneg-
ative second coordinate.

RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS Vol. 23 No. 1 2016



50 DEMIDOV et al.

Theorem 4.2. The equation of the previous theorem can be simplified and transformed into a
Cauchy problem. Using the same notation as in Theorem (4.1), we obtain the equation

Q(N)Ṅ =
q

2
e−2α0

(
P 0(N) +

1

2|ω|
P 1(N)

)
,

where Q(N) = Q0(N) +Q1(N). Q(N) verifies the equality

Q1(N) Ṅ =
1

2|ω|
d|ω|
dt

P 1(N) with |ω| = 1

2

∑
06k<i6m−1

sin(Ni+1−Nk+1)

∫ σk+1

σk

1

g(η)
dη

∫ σi+1

σi

1

g(η)
dη,

d|ω|
dt

=
1

2

∑
06k<i6m−1

(Ṅi+1 − Ṅk+1) cos(Ni+1 −Nk+1)

∫ σk+1

σk

1

g(η)
dη

∫ σi+1

σi

1

g(η)
dη

+
1

2

∑
06k<i6m−1

m∑
n=1

Ṅn

π

[∫ σk+1

σk

ln fn(η)

g(η)
dη

∫ σi+1

σi

1

g(η)
dv

+

∫ σk+1

σk

1

g(v)
dη

∫ σi+1

σi

ln fn(η)

g(η)
dη

]
sin(Ni+1 −Nk+1).

Proof. The area of the fluid delimited by the quasi-contour is a polygon, and this area can be
expressed by the following formula |Ω| = 1

2

∑m−1
i=0 (xiyi+1−xi+1yi), where (xi, yi) are the coordinates

of the i-th vertex. We already know that

xi =

(
|γ0| −

i∑
k=1

sin Nk

∫ σk

σk−1

1

g(v)
dv

)
eα0 , yi =

(
i∑

k=1

cos Nk

∫ σk

σk−1

1

g(v)
dv

)
eα0 ;

by introducing the notation xi+1 = (x̃i − si)e
α0 and yi+1 = (ỹi + ci)e

α0 , we immediately obtain

|Ω| = e2α0 |ω| = 1

2
e2α0

m−1∑
i=0

(x̃ici + ỹisi) . (4.8)

Remembering that the m-th vertex belongs to the x-axis, we deduce the relation

m−1∑
i=0

cos Ni+1

∫ σi+1

σi

1

g(v)
dv = 0 ,

and a direct calculation of the area using the above expressions leads to the result for |ω|. Differ-

entiating the first equality in (4.8) and using the expression d|Ω|
dt = q

2 , we succeed to remove α̇0 in
the equation.

4.3. Numerical Scheme

We implement an explicit Euler scheme with respect to time. The originality in our method
consists in the choice of the time scale, which is not a chosen parameter, but a consequence of
constraint on the angles. Supposing that the sequences

(
N0,N1, . . . ,Nℓ

)
and

(
α0
0, α

1
0, . . . , α

ℓ
0

)
are

known for successive times t0 = 0, t1, . . . , tℓ, then we compute Nℓ+1 and αℓ+1
0 at time tℓ+1 > tℓ

by the following formulas
Nℓ+1 −Nℓ

tℓ+1 − tℓ
=

q

2
exp(−2αℓ

0)Q(Nℓ)−1
(
P 0(N) +

1

2|ω|
P 1(N)

)
,

αℓ+1
0 =

1

2
ln

|Ω|(Nℓ+1)

|ω|(Nℓ+1)
.

(4.9)
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Fig. 5. Evolution in time of a quasi-contour in the source-case.

To avoid fast movement of the boundary, we chose to fix the quantity maxi=1,...,m |Ni
ℓ+1 − Ni

ℓ|
to be a constant C. The value tℓ+1 − tℓ is therefore equals to C/maxi=1,...,m |Ni

ℓ+1 − Ni
ℓ|. The

variation of the area (and time) is then a consequence of this previous choice

d|Ω|
|Ω|

=
q C

e2α0 |ω|maxi=1,...,m Ṅi

.

The expression for αℓ+1
0 in (4.9) is explicitly found using the formulas in Theorem 4.2.

The main difficulty of this scheme is that, for some ℓ, det
(
Q(Nℓ)

)
can be close to 0.

In this case, an iterative method is used in order to avoid the calculation of Q−1.
Before giving numerical results, we define the critical subset of codimension 1 which corresponds

to a discrete version of (3.13). Of course, it depends on parameter σ via the matrix Q̃(N) (see the
beginning of Subsection 4.1).

Definition 4.2. For given m ∈ N∗ and fixed parameters σ, the critical subset is

Mm = {N ∈ Um / det
(
Q(N)

)
= 0 } .

This discrete model set Mm is an analog of the set M given by (3.13)

5. NUMERICAL EXPERIMENTS

In our program implemented in C++, we chose the same initial conditions for all examples. We
fixed |Ω0| = 100, q = ±1 and C = 2. In all cases, we looked at the evolution of det

(
Q̃(N)

)
and

visually compared the numerical results with exact solutions.
Initial conditions for N are a discretization of the graphical representation of an analytic function

z = f(ζ) with |ζ| = 1. The sequence σ is found using a software specialized in finite element
calculation (FreeFem++).

5.1. Source-Case

Our aim is to verify that, in the source-case, quasi-contours usually tend to regular centered
ones for initial contours near to a regular polygon.

Here the initial contour is the 20 edge discretization of the curve z = ζ − 0.2ζ2 + 0.2ζ3 with
|ζ| = 1. In order to understand how the quasi-contour evolves, we define:

ρ =
max{Opk/0 6 k 6 m}
min{Opk/0 6 k 6 m}

.

In Fig. 5, we present the evolution in time of the initial configuration with nine other shapes, the
last one been the 38th iteration. The source-point, represented by the cross, with power (q = 1),
guaranteed that time and area evolve at the same speed.
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Fig. 6. Evolution in time of the determinant of the matrix Q as a function of time (left) and
of ρ as a function of log(|Ω|) (right).

Fig. 7. Evolution in time in the sink-case of a quasi-contour leading to a cardioid.

The determinant of the matrix Q (left side) and the value of ρ (right side) are given on next
Fig. 6; they are functions of time and log(|Ω|), respectively.

We observed that the chosen quasi-contour tends to a regular one, which belongs to the critical
subset M15. The attractivity is very slow when time increases. This confirms that the circular
contour (for initial contour ‘near’ to a regular polygon) is the limit of contour when t −→ +∞,
in the source-case. We have proceeded to many other numerical experiments (different geometrical
cases and higher values of m) and obtained similar behaviors which confirm the theoretical results
given in Section 3. 5.2. Sink-Case

To underline the efficiency of our method, we chose to numerically reproduce the evolution of
well-known exact solutions.

Classical Galin–Kochina example : cardioid case. Fig. 7 represents the evolution in time
of a quasi-contour (left side), whose initial shape is the 20 edge discretization of the graphical
representation z = ζ − 0.05ζ2 , |ζ| = 1 . We observed that the obtained quasi-contour came closer
to a cardioid (the exact solution) when det

(
Q(N)

)
approached zero. For comparison, we gave the

exact solution (right side).
We notice that the calculation can go further until the domain remains connected. As observed

in Fig. 8, the determinant moves away from zero after the occurrence of a cusp. This also gives us a
way to understand numerically when the quasi-contour is the best discretization of the final exact
solution (contour with a cusp).

Higher symmetry case. We also give examples of more complicated behavior which corre-
spond to a higher symmetry configuration. The discretization is that of a corner domain, i.e., an
infinite angle α < π. The numerical scheme remains explicit with small modifications in formulas.
Explanations can be found in [13].

We consider three initial 10-edge quasi-contours, whose edges are deduced from following graph-
ical representations : z = ζ − 0.02ζ3 , |ζ| = 1 (a) ; z = ζ − 0.02ζ4 , |ζ| = 1 (b) and; z = ζ − 0.01ζ7,
|ζ| = 1 (c).
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Fig. 8. Evolution in time of the determinant of the matrix Q.

Fig. 9. Evolution in time of quasi-contours in the sink-case, and exact solutions for (a) (left
side up), (b) (left side bottom) and (c) (right side).

Fig. 10. Evolution in time of det
(
Q(N)

)
for the quasi-contour (a).

We present results in Fig. 9, giving for each time evolution the exact solution.
Again, we conclude that the moment when cusps occur corresponds to a minimum of function

det
(
Q(N)

)
. For example, in Fig. 10 we represent the time evolution of det

(
Q(N)

)
for the quasi-

contour (a).
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Fig. 11. Evolution in time of quasi-contour (left side) and his determinant det
(
Q(N)

)
(right

side).

We have tried to reproduce the evolution of a more complicated solution. In [20], we consider an
initial contour leading, when first cusp occurs, to the superposition of two identical circles, whose
sink-point is located at the unique intersection.

In Fig. 11, we represented the time evolution of the 20-edge initial quasi-contour until the cusp
occurs (left side) and the function det

(
Q(N)

)
depending on time (right side).

The conclusion concerning the determinant remains the same, however, the final quasi-contour
does not draw two circles. The loss in accuracy certainly comes to the low number of edges chosen
for the discretization. Another explanation could be the choice of the parameter C, whose value
should be smaller to improve results.

We managed to construct a scheme that demonstrates a high accuracy in numerical results.
Further work on the convergence of the numerical scheme must be done, since a Cauchy problem
has be found.
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Verlag, Basel, 2006).

20. Yu. E. Hohlov and S. D. Howison, “On the Classification of Solutions to the Zero-Surface-Tension
Model for Hele-Shaw Free Boundary Flows,” Quart. Appl. Math. 51 (4), 777–789 (1993).

21. Hele-Shaw Flows and Related Problems, S. D. Howison and J. R. Ockendon, eds., European J. Appl.
Math. 10 (6), 511–709 (1999).
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32. P. I. Plotnikov and V. N. Starovöıkov, “The Stefan Problem with Surface Tension as a Limit of the
Phase Field Model,” Differ. Uravn. 29 (3), 461–471 (1993) [Differ. Equ. 29 (3), 395–404 (1993)].

33. P. Ya. Polubarinova-Kochina, “On the Motion of the Oil Contour,” Dokl. Akad. Nauk SSSR 47, 254–257
(1945) [in Russian].

34. P. Ya. Polubarinova-Kochina, “Concerning Unsteady Motions in the Theory of Filtration,” Prikl. Mat.
Mech. 9, 79–90 (1945) [in Russian].

35. M. Reissig and L. Wolfersdorf, “A Simplified Proof for a Moving Boundary Problem for Hele-Shaw
Flows in the Plane,” Ark. Mat. 31 (1), 101–116 (1993).

36. M. Sakai, “Regularity of a Boundary Having a Schwarz Function,” Acta Math. 166, 263–297 (1991).

37. M. Sakai, “Regularity of Free Boundaries in Two Dimensions,” Ann. Sc. Norm. Super. Pisa Cl. Sci.
20, 323–339 (1993).

38. H. S. Shapiro, The Schwarz Function and Its Generalization to Higher Dimensions (University of
Arkansas lecture notes in the mathematical sciences, 9, New-York, John Wiley & Sons Inc, 1992).

39. G. G. Stokes, Mathematical Proof of the Identity of the Stream-Lines Obtained by Means of Viscous
Film with Those of a Perfect Fluid Moving in Two Dimensions (Brit. Ass. Rep., 143 (Papers, V, 278)
1898).

40. Yu. P. Vinogradov and P. P. Kufarev, “On a Problem of Filtration,” Prikl. Mat. Mech. 12, 181–198,
(1948) [in Russian].

RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS Vol. 23 No. 1 2016


